| Method | Main Violative Category Recall | Negative Content | Positive Content | Overall Accuracy | |||||
|---|---|---|---|---|---|---|---|---|---|
| Law&Safety | Content | Commercial | Intellectual | Precision | Recall | Precision | Recall | ||
| Binary Classification | |||||||||
| Perspectivetoxicity | 0.6036 | 0.4598 | 0.3455 | 0.2941 | 0.6591 | 0.7059 | 0.5538 | 0.5000 | 0.6190 |
| Perspectivesevere | 0.1716 | 0.1092 | 0.0909 | 0.1765 | 0.5922 | 0.9170 | 0.5429 | 0.1351 | 0.5870 |
| GPT-4o mini | 0.7235 | 0.6833 | 0.5091 | 0.5294 | 0.7679 | 0.7958 | 0.7057 | 0.6706 | 0.7430 |
| GPT-4o | 0.8176 | 0.8101 | 0.8182 | 0.4706 | 0.8346 | 0.7336 | 0.6870 | 0.8009 | 0.7620 |
| RoBERTa | 0.8530 | 0.7667 | 0.7455 | 0.5882 | 0.6448 | 0.7915 | 0.6817 | 0.8174 | 0.7400 |
| CN-CLIP | 0.7396 | 0.6034 | 0.7636 | 0.5882 | 0.7836 | 0.6777 | 0.7858 | 0.8633 | 0.7850 |
| YOLO | 0.7929 | 0.5920 | 0.7818 | 0.4706 | 0.8189 | 0.6967 | 0.8003 | 0.8875 | 0.8070 |
| Intern-VL-7B-SFT | 0.8471 | 0.8056 | 0.8000 | 0.6471 | 0.8152 | 0.7765 | 0.8600 | 0.8287 | 0.8230 |
| Multi-Class Classification | |||||||||
| GPT-4o mini | 0.8706 | 0.7889 | 0.8727 | 0.4118 | 0.6161 | 0.8175 | 0.8250 | 0.6280 | 0.7130 |
| GPT-4o | 0.8647 | 0.8278 | 0.8364 | 0.5294 | 0.6381 | 0.8318 | 0.8422 | 0.6557 | 0.7300 |
| Intern-VL-7B-SFT | 0.6706 | 0.5944 | 0.7091 | 0.2353 | 0.7976 | 0.6256 | 0.7638 | 0.8841 | 0.7750 |
| KuaiMod-7B | 0.8765 | 0.8333 | 0.8545 | 0.7059 | 0.9701 | 0.8460 | 0.8972 | 0.9810 | 0.9240 |